\(A=\frac{5x-2}{x-2}=\frac{5\left(x-2\right)+10-2}{x-2}=\frac{5\left(x-2\right)}{x-2}+\frac{10-2}{x-2}=5+\frac{8}{x-2}\)
- Để A nguyên thì 8 phải chia hết cho x - 2
=>\(x-2\varepsilonƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
=> \(x\varepsilon\left\{-6;-2;0;1;3;4;6;10\right\}\)
Vậy:...
\(A=\frac{5x-2}{x-2}\)
\(=\frac{5x-10+8}{x-2}\)
\(=\frac{5\left(x-2\right)+8}{x-2}\)
\(=\frac{5\left(x-2\right)}{x-2}+\frac{8}{x-2}\)
\(=5+\frac{8}{x-2}\)
Để \(A\in Z\Rightarrow8⋮\left(x-2\right)\)
\(\Rightarrow x-2\in U\left(8\right)=\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
\(\Rightarrow x=\left\{3;4;6;10;1;0;-2;-6\right\}\)