\(A=\frac{2}{3}+\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{2}{3}+\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{2}{3}+\frac{98}{303}\)
\(A=\frac{100}{101}\)
\(A=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+.....+\frac{2}{99x101}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}=\)
\(A=\frac{1}{1}-\frac{1}{100}\)
\(A=\frac{99}{100}\)
A=2/1*3+2/3*5+2/5*7+....+2/99*101
A=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
A=1-1/101
A=100/101
\(A=\frac{2}{3x1}+\frac{2}{3x5}+.....+\frac{2}{99x101}\)
\(A=\frac{2}{3}-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{2}{3}+\left(\frac{2}{3}-\frac{1}{101}\right)\)
\(A=\frac{100}{101}\)
\(A=\frac{2}{3x1}+\frac{2}{3x5}+.....+\frac{2}{99x101}\)
\(A=\frac{2}{3}-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{2}{3}+\left(\frac{2}{3}-\frac{1}{101}\right)\)
\(A=\frac{100}{101}\)
\(A=\frac{2}{3x1}+\frac{2}{3x5}+.....+\frac{2}{99x101}\)
\(A=\frac{2}{3}-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{2}{3}+\left(\frac{2}{3}-\frac{1}{101}\right)\)
\(A=\frac{100}{101}\)
\(A=\frac{2}{3x1}+\frac{2}{3x5}+.....+\frac{2}{99x101}\)
\(A=\frac{2}{3}-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{2}{3}+\left(\frac{2}{3}-\frac{1}{101}\right)\)
\(A=\frac{100}{101}\)
\(A=\frac{2}{3x1}+\frac{2}{3x5}+.....+\frac{2}{99x101}\)
\(A=\frac{2}{3}-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{2}{3}+\left(\frac{2}{3}-\frac{1}{101}\right)\)
\(A=\frac{100}{101}\)
A =2/1.3+2/3.5+1/5.7+..........+2/99.101
A =1-1/3 + 1/3-1/5+ 1/5-1/7+........+1/99-1/101
A =1-1/101
A=100/101
VẬY A =100/101