Chứng minh rằng :
A=\(9\left(\frac{1}{10!}+\frac{1}{11!}+\frac{1}{12!}+...+\frac{1}{2020!}\right)< \frac{1}{9!}\)
1.so sánh các phân số sau bằng cách nhanh nhất
a)\(\frac{19}{24}và\frac{34}{39}\) b)\(\frac{1}{3};\frac{3}{5}và\frac{5}{7}\) c)\(\frac{a+1}{a+2}và\frac{a+2}{a+3}\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
So sánh:
a)\(\frac{7^{15}}{1+7+7^2+...+7^{14}}\) và \(\frac{9^{15}}{1+9+9^2+...+9^{14}}\)
b) \(\frac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)và \(\frac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
1.so sánh các phân số sau bằng cách nhanh nhất
a)\(\frac{2012}{2013}và\frac{2013}{2014}\) b)\(\frac{1006}{1007}và\frac{2013}{2015}\) c)\(\frac{64}{73}và\frac{45}{51}\) d)\(\frac{2323}{2424}và\frac{20132013}{20142014}\)
a) Cho \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{60}\)
Chứng minh \(\frac{3}{5}< S< \frac{4}{5}\)
b) Chứng minh \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{100}>\frac{7}{10}\)
c) Chứng minh \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không là số tự nhiên d) Chứng minh \(\frac{1}{15}< D< \frac{1}{10}với\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)So sánh : a) \(\frac{1}{n}\) và \(\frac{1}{n+1}\) ; b) \(\frac{n+1}{n+2}\) và \(\frac{n}{n+3}\) (với n \(\in\) N*)
1.so sánh
a)cho A=\(\frac{10^{2001}+1}{10^{2002}+1}\) ; B=\(\frac{10^{2002}+1}{10^{2003}+1}\) hãy so sánh A và B
b)C=\(\frac{196}{197}+\frac{197}{198}\) và D=\(\frac{196+197}{197+198}\)
c)E=\(\frac{2011+2012}{2012+2013}\) và F=\(\frac{2011}{2012}+\frac{2012}{2013}\)
1. Chứng tỏ rằng:
a) \(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\)
b) \(\dfrac{m}{a.\left(a+m\right)}=\dfrac{1}{a}-\dfrac{1}{a+m}\)
2. Tính
a) \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
b) \(\dfrac{5}{10.15}+\dfrac{5}{15.20}+...+\dfrac{5}{195.200}\)
c) \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{96.98}\)