\(A=\frac{1+2018.2019}{2017.2019+2020}=\frac{1+2019+2017.2019}{2017.2019+2020}=\frac{2020+2017.2019}{2017.2019+2020}=1\)
\(A=\frac{1+2018.2019}{2017.2019+2020}=\frac{1+2019+2017.2019}{2017.2019+2020}=\frac{2020+2017.2019}{2017.2019+2020}=1\)
So sánh hai phân số
A=2017/2018+2018/2019+2019/2020 và B=(2017+2018+2019)/(2018+2019+2020)
\(\frac{1+2018×2019}{2017×2019+2020}\)
So sánh A = ( 2017 mũ 2019 + 2018 mũ 2019 ) tất cả mũ 2020 và B = ( 2017 mũ 2020 + 2018 mũ 2020 ) tất cả mũ 2019
So sánh A = ( 20182019 + 20172019 ) 2020 và B = ( 20182020 + 20172020 ) 2019
chứng minh 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 > 6
So sánh A và B:
\(A=\frac{2018^2}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
Cho \(A=\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
\(B=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2019\cdot2020}\)
So sánh A và B
Mình rất cần vào sáng mai
Cho A=\(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
B= \(\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{2019.2020}\)
So sánh A và B
Cho A= \(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
và B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2010}\)
So sánh A và B