\(A=\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{3^{10}\cdot\left(11+5\right)}{3^9\cdot16}=\dfrac{3^{10}\cdot16}{3^9\cdot16}=3\)
\(B=\dfrac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\dfrac{2^{10}\cdot\left(13+65\right)}{2^8\cdot2^2\cdot26}=\dfrac{2^{10}\cdot78}{2^{10}\cdot26}=3\)
\(C=\dfrac{72^3\cdot54^2}{108^4}=\dfrac{\left(2^3\cdot3^2\right)^3\cdot\left(2\cdot3^3\right)^2}{\left(3^3\cdot2^2\right)^4}\\ =\dfrac{2^9\cdot3^6\cdot2^4\cdot3^6}{3^{12}\cdot2^8}=\dfrac{2^{13}\cdot3^{12}}{3^{12}\cdot2^8}=2^5=32\)
\(D=\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\dfrac{11\cdot3^{29}-\left(3^2\right)^{15}}{2^2\cdot3^{28}}=\dfrac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}\\ =\dfrac{3^{29}\cdot\left(11-3\right)}{2^2\cdot3^{28}}=\dfrac{3^{29}\cdot8}{4\cdot3^{28}}=3\cdot2=6\)