Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a+b+c+d ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính giá trị biểu thức:
P = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
cho tỷ lệ thức a/b=c/d. chứng minh:
a, 2a+5b/3a-4b=2c+5d/3c-4d
b. 3a+7b/5a-7b=3c+7d/5c-7d
d. 4a+9b/4a-7b=4c+9d/4c-7d
giúp mình với ạ
Cho a+b+c+d khác 0 và \(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{b+a+d}\)=\(\frac{d}{c+b+a}\)
Tính giá trị biểu thức P=\(\frac{2a+5b}{3c+4d}\)- \(\frac{2b+5c}{3d+4a}\)- \(\frac{2c+5d}{3a+4b}\)- \(\frac{2d+5a}{3c+4b}\)
Cho a/b = c/d Chứng minh:
a. 3a+4b / 3a-4b = 3c+4d / 3c - 4d
b. 5a+2c / 4a = 5b+2d / 4b
c. (a+b)2 / (c+d)2 = a2+b2 / c2+d2
CẢM ƠN.
Cho a , b ,c ,d thỏa mãn : \(\frac{a}{a+2b}=\frac{c}{c+2d}\). Tính \(\frac{a^2d^2-4b^2c^2}{abcd}\)
Cho a ,b ,c , d thỏa mãn : \(\frac{2a+3c}{2b+3d}=\frac{3a-4c}{3b-4d}\).. Tính \(\frac{4a^3d^3-b^3c^3}{4b^3c^3-a^3d^3}\)
Cho tỉ lệ thức a/b=c/d. CMR (2a+5b)/ (3a-4b) = (2c+5d) / (3c-4d)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)