Cho tam giác ABC đều có O là trung điểm cạnh BC. Vẽ góc xOy=60 độ sao cho các tia Ox, Oy cắt các cạnh AB, AC lần lượt tại E, F. Chứng minh rằng:
a) BC2 = 4. BE . FC
b) EO là phân giác góc BEF
Cho tam giác ABC có ba góc nhọn, AB=2cm, AC=4cm. Trên cạnh AC lấy điểm M sao cho góc ABM bằng góc ACB.
a) CMR: ΔABM∼ΔACB.
b) Từ A kẻ AH⊥BC, AK⊥BM. CMR:\(S_{AHB}=4S_{AKM}\)
Cho tam giác ABC có ba góc nhọn, AB=2cm, AC=4cm. Trên cạnh AC lấy điểm M sao cho góc ABM bằng Góc ACB.
a) CMR: ΔABM∼ΔACB.
b) Từ A kẻ AH⊥BC, AK⊥BM. CMR:\(S_{AHB}=4S_{AKM}\)
Cho Tam giác ABC đồng dạng với DEF. Gọi M,N lần lượt là trung điểm của BC,EF. Chứng minh 2 tam giác ABM đồng dạng với Tam giác DEN và AC/DF=AM/DN
hình thang ABCD, đáy nhỏ AB, I là trung điểm AB. DA và CB cắt nhau tại M. AC và BD cắt nhau tại N
a) M,I,N thẳng hàng
b) cmr: NM đi qua trung điểm K của BC
Bài 1: Cho tam giác ABC vuông tại A vẽ đường cao AH, AB=6cm,AC=8cm
a)CMR: △HBA∼△ABC
b)Tính BC, AH, BH
c)Gọi I và K lần lượt hình chiếu của điểm H lên cạnh AB, AC. Chứng minh AI.AB=AK.AC
Cho tam giác ABC cân tại A ( A<90 độ), O thuộc BC. Trên cạnh AB, AC lấy M và N sao cho MON=ABC. Chứng minh tam giác BMO đồng dạng với tam dạng CON
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a, Chứng minh AH = MN b, Chứng minh tam giác AHM đồng dạng với tam giác AHB rồi suy ra AH^2 = AM . AB c, Chứng minh tam giác AMN đồng dạng với tam giác ACB d, Cho AB = 6cm, AC = 8cm. Tính diện tích của tam giác AMN.
Cho HBH ABCD có đg chéo AC > BD . Gọi I , K lần lượt là hình chiếu của điểm B,D trên đg thẳng AC. Gọi hình chiếu của điểm C trên dt AB , AD lần lượt là H, K.
a) CM : BJ = DI
b)CM AH . AD + AD . AK = EF.EG
c) Qua điểm A kẻ đt d bất kỳ cắt đg chéo BD, cạnh Bc và tia Dc lần lượt tại E,F,G.CM AE2= EF.EG
d) Cm \(\dfrac{1}{AE}\)= \(\dfrac{1}{AF}\)+ \(\dfrac{1}{AG}\)
e) Cm khi đg thẳng d thay đổi quanh điểm A thì tích BD.DG ko đổi