a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>AD=AE
AE/AB=AD/AC
=>DE//BC
b: Xét ΔABI vuông tại B có BD là đường cao
nên AB^2=AD*AI
=>AC^2=AE*AI
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>AD=AE
AE/AB=AD/AC
=>DE//BC
b: Xét ΔABI vuông tại B có BD là đường cao
nên AB^2=AD*AI
=>AC^2=AE*AI
chotam giác ABC cân tại A(góc A khác 90độ) dg cao BD và CE (D thuộc AC,E thuộc AB ).Vẽ Bx vuông AB Tia Bx cắt AC tại I .cm :
a)ED//BC
b)AC^2=AE.AI
c)góc DBC=góc CBI
Cho tam giác ABC (góc A=90). D thuộc BC sao cho BD=BA. Qua D kẻ đường thăng d vuông góc BC cắt tia đối của tia AB tại E. Chứng minh:
a)Tam giác BEC cân
b)ED cắt AC tại H. Chứng minh BH vuông góc EC
c)Tia Bx vuông góc BA, ED cắt Bx tại K
Chứng minh tam giác BHK cân.
Bài 1: Tứ giác ABCD, góc A =góc C=90 độ. Da cắt CB tại E, AB cắt CD tại F. Chứng minh rằng:
a) Góc E= góc F
b) Tia phân giác của góc E cắt AB tại G, cắt CD tại H. Tia phân giác của góc F cắt BC tại I,cắt AD tại K.
CMR: GKHI là hình thoi
Bài 2: Tam giác ABC đều. M thuộc BC, ME vuông góc với AB (E thuộc AB). ME vuông góc với AC (F thuộc AC). I thuộc AM: IA=IM. D thuộc BC: DB=DC. Chứng minh rằng:
a) Góc DIE, góc DIF=?
b) DEIF là hình thoi
Bài 3: Tam giác ABC, D thuộc AB, E thuộc AC: BD=CE. M thuộc DE: MD=ME. N thuộc BC: NB=NC. I thuộc BE: IB=IE. K thuộc CD: KC=KD. Chứng minh rằng:
a) MINK là hình?
b) IK cắt AB tại G, IK cắt AC tại H
CMR: Tam giác AGH cân
Bài 1: Tam giác ABC đều. M thuộc BC, ME vuông góc với AB (E thuộc AB). ME vuông góc với AC (F thuộc AC). I thuộc AM: IA=IM. D thuộc BC: DB=DC. Chứng minh rằng:
a) Góc DIE, góc DIF=?
b) DEIF là hình thoi
Bài 2: Tam giác ABC; D thuộc AB, E thuộc AC: BD=CE. M thuộc DE: MD=ME, N thuộc BC: NB=NC, I thuộc BE: IB=IE, K thuộc CD: KC=KD. Chứng minh rằng:
a) MINK là hình?
b) IK cắt AB tại G, IK cắt AC tại H.
CMR: Tam giác AGH cân
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Cho tam giác ABC vuông tại A có AB 6cm, AC 8cm. Đường phân giác góc A cắt BC tại D, đường cao AH(H thuộc BC)
a) Tính BC,BD
b) Chứng minh: AH = BH.HC
c) Kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (F thuộc AC). Chứng minh: EB.BC =BD.AB
d) Tính diện tich TGiac AHD.
Giúp mình 2 bài này với :
1. Cho tam giác ABC (AB<AC). D,E là các điểm lần lượt thuộc AB,AC sao cho BD=CE. DE cắt BC tại K. Chứng minh : AB/AC = KE/KD.
2. Cho tam giác ABC vuông cân tại A, BD là trung tuyến. Qua A kẻ đường thẳng vuông góc với BD cắt BC tại E. Chứng minh EB=2EC
Cho tam giác ABC cân tại A, E thuộc AB. Trên tia đối tia CA lấy F sao cho CF=BE. Vẽ Bx vuông góc AB, Cy vuông góc AB. Gọi I giao điểm Bx và Cy.
a) Chứng minh tam giác IEF cân.
b) Qua E vẽ đường thẳng song song với BC cắt AC tại D. Chứng minh CD=CF
c) H giao điểm EF và BC. Chứng minh E, F đối xứng qua IH.
Cho tam giác ABC vuông tại A, phân giác ABC cắt AC tại D. Từ D vẽ đường thẳng vuông góc với AC, đường thẳng này cắt BC tại E.
a) Chứng minh: DC.AB=DA.CB
b) Chứng minh: CB/AB=CE/BE
cho tam giác ABC vuông tại A, AB=12cm; AC=16cm. Vẽ đường cao AH (H thuộc BC). Đường phân giác BD của góc ABC cắt AH tại E ( D thuộc AC)
a) Chứng minh: AB^2 = BH.BC
b) Tính AD
C) Chứng minh: DB/EB = DC/DA