\(\frac{a}{3}-b=c:\frac35\)
=>\(\frac{a-3b}{3}=c\cdot\frac53=\frac{5c}{3}\)
=>a-3b=5c
=>a-5c=3b; 5c+3b=a
\(\left(\frac{a-5c}{5a}\right)^3=\left(\frac{3b}{5a}\right)^3=\frac{27b^3}{125a^3}\)
\(\left(\frac{a-3b}{b}\right)^3=\left(\frac{5c}{b}\right)^3=\frac{125c^3}{b^3}\)
\(\left(\frac{5c+3b}{3c}\right)^3=\left(\frac{a}{3c}\right)^3=\frac{a^3}{27c^3}\)
\(Q=2022-\left(\frac{a-5c}{5a}\right)^3\cdot\left(\frac{a-3b}{b}\right)^3\cdot\left(\frac{5c+3b}{3c}\right)^3\)
\(=2022-\frac{27b^3}{125a^3}\cdot\frac{125c^3}{b^3}\cdot\frac{a^3}{27c^3}=2022-1=2021\)