a) \(x^8+14x^4+1=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)
\(=\left(x^4+2x^2+1\right)^2-4x^2\left(x^4-2x^2+1\right)=\left(x^4+2x^2+1\right)^2-\left(2x\left(x^2-1\right)\right)^2\)
\(=\left(x^4-2x^3+2x^2+2x+1\right)\left(x^4+2x^3+2x^2-2x+1\right)\)