Thay x=12 vào A, ta được
\(A=12^3+7\cdot12^5-2\cdot12^4=1702080\)
Thay x=12 vào A, ta được
\(A=12^3+7\cdot12^5-2\cdot12^4=1702080\)
Cho các đa thức:
P(x) = 2x4 – x – 2x3 + 1
Q(x) = 5x2 – x3 + 4x
H(x) = –2x4 + x2 + 5
Tính P(x) + Q(x) + H(x) và P(x) – Q(x) – H(x).
Cho các đa thức:
P(x) = 2x4 – x – 2x3 + 1
Q(x) = 5x2 – x3 + 4x
H(x) = –2x4 + x2 + 5
Tính P(x) + Q(x) + H(x) và P(x) – Q(x) – H(x).
P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.
Thu gọn
Cho
f ( x ) = x 2 + 2 x 3 - 7 x 5 - 9 - 6 x 7 + x 3 + x 2 + x 5 - 4 x 2 + 3 x 7 g ( x ) = x 5 + 2 x 3 - 5 x 8 - x 7 + x 3 + 4 x 2 - 5 x 7 + x 4 - 4 x 2 - x 6 - 12 h ( x ) = x + 4 x 5 - 5 x 6 - x 7 + 4 x 3 + x 2 - 2 x 7 + x 6 - 4 x 2 - 7 x 7 + x
Thu gọn và sắp xếp các đa thức trên theo lũy thừa tăng của biến.
Bài 1. Cho hai đa thức:
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính. P(x) + Q (x), P(x) - Q(x), Q(x) - P(x).
Bài 2. Cho hai đa thức:
P(x) = x5 + 5 - 8x4 + 2x3 + x + 5x4 + x2 - 4x3
Q(x) = (3x5 + x4 - 4x) - ( 4x3 - 7 + 2x4 + 3x5)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính P(x) + Q(x), P(x) - Q(x)
Bài 5. Cho hai đa thức:
P(x) = 2x4 + 2x3 - 3x2 + x +6
Q(x) = x4 - x3 - x2 + 2x + 1
a) Tính P(x) + Q(x), P(x) - Q(x)
b) Tính và P(x) - 2Q(x).
Bài 6. Cho đa thức P(x) = 2x4 - x2 +x - 2.
Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x4 + x3 + 2x2 + x + 1
b) P(x) - H(x) = x4 - x3 + x2 - 2
c) R(x) - P(x) = 2x3 + x2 + 1
Cho các đa thức :
A(x) = 5x - 2x4 + x3 -5 + x2; B(x) = - x4 + 4x2 - 3x3 + 7 - 6x ; C(x) = x + x3 -2
a)Tính A(x) + B(x) ; A(x) - B(x) ; B(x) – C(x); C(x) – A(x)
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
Cho
f ( x ) = x 2 + 2 x 3 - 7 x 5 - 9 - 6 x 7 + x 3 + x 2 + x 5 - 4 x 2 + 3 x 7 g ( x ) = x 5 + 2 x 3 - 5 x 8 - x 7 + x 3 + 4 x 2 - 5 x 7 + x 4 - 4 x 2 - x 6 - 12 h ( x ) = x + 4 x 5 - 5 x 6 - x 7 + 4 x 3 + x 2 - 2 x 7 + x 6 - 4 x 2 - 7 x 7 + x
Tính f(x) + g(x) – h(x)
: Cho các đa thức :
A(x) = 5x - 2x4 + x3 -5 + x2
B(x) = - x4 + 4x2 - 3x3 + 7 - 6x
C(x) = x + x3 -2
a)Tính A(x) + B(x) ; A(x) - B(x) + C(x) ; B(x) – C(x) – A(x); C(x) – A(x) – B(x)
c)Chứng tỏ rằng x = 1 là nghiệm của A(x) và C(x) nhưng không phải là nghiệm của đa thức B(x).