a) Ta có: \(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy: S={0;3}
b) Ta có: \(\left|x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy: S={4;-2}
c) Ta có: \(\left|2x-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
Vậy: S={0;1}
a) x2 - 3x = 0
=> x ( x-3 ) = 0
=> \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
b) |x-1|=3
=> \(\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
c) |2x-1|=1
=> \(\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)