a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006
=>(7-1)S=6-(1/7)^2007
=>S=1-(-1/7^2007/6)
a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006
=>(7-1)S=6-(1/7)^2007
=>S=1-(-1/7^2007/6)
a) Tính \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
b) Chứng Minh : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}<1\)
\(Tính.S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(CMR.\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
Bài 1 :a, Tính tổng\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+.......+\left(-\frac{1}{7}\right)^{2007}\)
b, CMR \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+.......+\frac{99}{100!}<1\)
c, CMR: mọi số nguyên dương n thì: \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
tính tổng \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^3+\left(-\frac{1}{7}\right)^4+.....+\left(-\frac{1}{7}\right)^{2007}\)
Tính gọn tổng sau :
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...\left(-\frac{1}{7}\right)^{2007}\)
b)\(Q=\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
giúp mình nha các bạn, cam on nhìu
a, Tính : \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b, Tính : \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c, Tính : \(\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
1.Chứng tỏ rằng:
A=75.(42004+42003+...+42+4+1)+25 chia hết cho 100
2.tính nhanh:
\(A=\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
\(B=\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{\sqrt[3]{2}}{35}\right).\left(-\frac{4}{15}\right)}{\left(\frac{1}{10}+\frac{\sqrt[3]{2}}{25}-\frac{\sqrt{2}}{5}\right).\frac{5}{7}}\)
3.a)tính giá trị của biểu thức A=3x2-2x+1 với |x|=\(\frac{1}{2}\)
b)Tìm x nguyên để \(\sqrt{x+1}\)chia hết cho \(\sqrt{x-3}\)
Bài 1 Thưc hiện phép tính ( tính nhanh nếu có thể)
a)\(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)
b)\(\left(\frac{5}{7}-\frac{7}{5}\right)-\left[\frac{1}{2}-\left(\frac{-2}{7}-\frac{1}{10}\right)\right]\)
C)\(\left(\frac{-1}{2}\right)-\left(\frac{-3}{5}\right)+\left(\frac{-1}{9}\right)+\frac{1}{17}-\left(\frac{-2}{7}\right)+\frac{4}{35}-\frac{7}{18}\)
d)\(\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5-\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
thực hiên các phép tính tính :
a) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)
b) \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)