A = √10 . [√10 + √(2/5)]
= 10 + 2
= 12
A = √10 . [√10 + √(2/5)]
= 10 + 2
= 12
1) Rút gọn:
a) A = \(\sqrt{5-2\sqrt{3-\sqrt{3}}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b) B = \(\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}\)
c) C = \(\dfrac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
d) D = \(\left(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\right).\sqrt{\dfrac{2+2\sqrt{5}}{2+\sqrt{5}}}\)
e) E = \(\dfrac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+2}}\)
Rút gọn
A=\(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+\sqrt{2\sqrt{5}}}}\)
Rút gọn
A=\(\dfrac{\sqrt{10+6\sqrt{2}}-\sqrt{10-6\sqrt{2}}}{\sqrt{5-\sqrt{7}}}-\sqrt{9+2\sqrt{20}}\)
A=\(\sqrt{5-2\sqrt{6}}\)
B=\(\sqrt{7+2\sqrt{10}}+\sqrt{7-2\sqrt{10}}\)
C= \(\sqrt{8+2\sqrt{15}}-\sqrt{5}\)
Thực hiện các phép tính sau:
a) B=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
b) \(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
\(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}-\sqrt{6}}\)
rút gọn
a) \(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)
b) \(\left(\sqrt{7-3\sqrt{5}}\right)\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
c) \(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\left(\sqrt{6+\sqrt{35}}\right)\)
So sánh A và B biết:
A=\(\dfrac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
B= \(\sqrt{3-\sqrt{5}}\)
Bài 5: So sánh
1,A=\(\sqrt{13}\) + \(\sqrt{20}\)
B=\(\sqrt{24}\) + \(\sqrt{19}\)
2,A=\(\sqrt{26}\) + \(\sqrt{10}\)
B=\(\sqrt{64}\)