\(A=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9.\left(1+\left[-\frac{1}{2}+\frac{1}{2}\right]+\left[-\frac{1}{3}+\frac{1}{3}\right]+...+\left[-\frac{1}{99}+\frac{1}{99}\right]-\frac{1}{100}\right)\)
\(A=9.\left(1+0+0+...+0-\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{100}\right)\)
\(A=9.\left(\frac{100}{100}-\frac{1}{100}\right)=9.\left(\frac{99}{100}\right)\)
\(A=\frac{891}{100}=8\frac{91}{100}\)
k cho mk nha
\(A=\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=\frac{9.1}{1.2.1}+\frac{9.1}{2.3.1}+...+\frac{9.1}{98.99.1}+\frac{9.1}{99.100.1}\)
\(A=1\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(A=1.\frac{99}{100}\)
\(A=\frac{99}{100}\)
A= \(9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
A = \(9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
A = \(9\left(1-\frac{1}{100}\right)\)
A = \(9.\frac{99}{100}\)
A = \(\frac{891}{100}\)
A= 9.(1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100)
=9.(1-1/2+1/2-1/3+...+1/98-1/99+1/99-1/100)
=9.(1-1/100)
= 9.99/100
=891/100
Có gì ko hiểu kết bạn với mình
Mình trả lời cho
\(A=9.\left(1.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+...+\frac{1}{99}.\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)