a) Cho mặt phẳng tọa độ Oxy vẽ parabol ( P ): y = \(\frac{1}{2}^{ }\) x2.
b) Tìm m để đường thẳng ( d ): y = ( m - 1 )x + \(\frac{1}{2}m^2+m\) đi qua điểm M (1; -1).
c) Chứng minh rằng parabol ( P ) luôn cắt đường thẳng ( d ) tại hai điểm phân biệt A và B. Gọi x1, x2 là hoành độ hai điểm A, B. Tìm m sao cho: x12 + x22 + 6x1x2 > 2019.
Help me!!!
a, b, dễ quá bỏ qua .
b, - Xét phương trình hoành độ giao điểm :
\(\frac{1}{2}x^2=\left(m-1\right)x+\frac{1}{2}m^2+m\)
=> \(\frac{1}{2}x^2-\left(m-1\right)x-\frac{1}{2}m^2-m=0\)
=> \(\Delta=b^2-4ac=\left(-\left(m-1\right)\right)^2-\frac{4.1}{2}.\left(-\frac{1}{2}m^2-m\right)\)
=> \(\Delta=m^2-2m+1+m^2+2m=2m^2+1\ge1>0\forall m\)
Nên phương trình luôn có 2 nghiệm phân biệt với mọi m .
=> ( P ) căt ( d ) tại hai điểm phân biệt .
Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2+2m\end{matrix}\right.\)
- Để \(x^2_1+x^2_2+6x_1x_2>2019\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2>2019\)
<=> \(\left(2m-2\right)^2+4\left(m^2+2m\right)>2019\)
<=> \(4m^2-8m+4+4m^2+8m>2019\)
<=> \(8m^2>2015\)
<=> \(m^2>\frac{2015}{8}\)
<=> \(\left[{}\begin{matrix}m>\sqrt{\frac{2015}{8}}\\m< -\sqrt{\frac{2015}{8}}\end{matrix}\right.\)