Áp dụng hằng đẳng thức:\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}\left(1\right)}\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\left(2\right)\)
Lấy (1) thay vào (2) ta được:
\(\Leftrightarrow a^3+b^3+c^3+3.\left(-c\right).\left(-b\right).\left(-a\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
Ta có : a + b + c = 0
=> ( a + b + c )3 = 0
=> a3 + b3 + c3 + 3a2b+ 3ab2+ 3a2c + 3ac2 + 3b2c + 3bc2 + 6abc = 0
=> a3 + b3 + c3 + ( 3a2b+ 3ab2 + 3abc ) + ( 3a2c + 3ac2 + 3abc ) + ( 3b2c + 3bc2 + 3abc ) - 3abc = 0
=> a3 + b3 + c3 + 3ab ( a + b + c ) + 3ac ( a + b + c ) + 3bc ( a + b + c ) = 3abc
MÀ a + b + c = 0
=> a3 + b3 + c3 = 3abc (đpcm)
Hok Tốt!!!!
ta có :a+b+c=0 \(\Rightarrow\) a + b =\(-\)c (1) \(\Rightarrow\) (a+b)\(^3\) = ( -c )\(^3\)\(\Rightarrow\) \(a^{3^{ }}+3a^2+3ab^2+b_{ }^2\) = -c^3
\(\Leftrightarrow\)a^3 + b^3 + c^3 + 3ab(a+b) =0 từ (1) \(\Rightarrow\)a^3 + b^3 + c^3 =\([3ab\left(-c\right)]=0\)
\(\Rightarrow a^{3^{ }}+b^3+c^3-3abc=0\) \(\Leftrightarrow a^3+b^3+c^3=3abc\) \(\Rightarrow\) ĐPCM