a, \(B=\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=\dfrac{2^{10}.\left(13+65\right)}{2^8.2^3.13}\)
\(=\dfrac{2^{10}.78}{2^{11}.13}\)\(=\dfrac{1.6}{2.1}=\dfrac{1.3}{1.1}=3\)
b: \(=\dfrac{2^{20}\cdot3^2+2^{54}}{2^{18}\cdot5^2}=\dfrac{2^{20}\left(3^2+2^{32}\right)}{2^{18}\cdot5^2}=\dfrac{2^2\left(3^2+2^{32}\right)}{25}\)
c: \(=\dfrac{2^9\cdot3^6\cdot3^6\cdot2^2}{2^8\cdot3^{12}}=\dfrac{2^{11}}{2^8}=8\)
d: \(=\dfrac{2^{12}\cdot3^4\cdot3^{10}}{2^{12}\cdot3^{12}}=9\)