a, A = 4 + 4^2 + 4^3 + ... + 4^n
=> 4A = 4.(4 + 4^2 + 4^3 + ... + 4^n)
=> 4A = 4^2 + 4^3 + 4^4 + ... + 4^n+1
=> 3A = 4A - A = (4^2 + 4^3 + 4^4 + ... + 4^n+1) - ( 4 + 4^2 + 4^3 + ... + 4^n)
=> 3A = 4^n+1 - 4
=> A = \(\frac{4^{n+1}-4}{3}\)
Vậy A = ..................
b, B = 1 + 3 + 3^2 + ... + 3^100
=> 3B = 3.(1 + 3 + 3^2 + ... + 3^100)
=> 3B = 3 + 3^2 + 3^3 + ... + 3^101
=> 2B = 3B - B =(3 + 3^2 + 3^3 + ... + 3^101) -(1 + 3 + 3^2 + ... + 3^100)
=> 2B = 3^101 - 1
=> B = \(\frac{3^{101}-1}{2}\)
Vậy B = ......................
A = 4 + 4^2 + 4^3 + ... + 4^n
4A = 4^2 + 4^3 + 4^4 + ... + 4^n+1
4A - A = ( 4^2 + 4^3 + 4^4 + ... + 4^n+1 ) - ( 4 + 4^2 + 4^3 +...+4^n)
3A = 4^n+1 - 4
A = 4^n+1 - 4/3