\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2019}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}\)
Lấy 2A trừ A theo vế ta có :
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2019}}\right)\)
\(A=1-\frac{1}{2^{2019}}\)
Vậy \(A=1-\frac{1}{2^{2019}}\)