Giải phương trình
a)\(x^2+3\sqrt{x^2-1}\) \(=\sqrt{x^4-x^2+1}\)
b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
c)\(8x^2-13x+7=1+\frac{1}{x}\sqrt[3]{3x^2-2}\)
Giải phương trình: \(8x^3-13x+7=\left(x+1\right)\sqrt[3]{3x^2-2}\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
GPT
A,\(\sqrt[3]{X^2-1}+X=\sqrt{X^3-2}\)
B,\(8X^3-13X+7=\left(X+1\right)\sqrt{3X^2-2}\)
MN ƠI GIÚP E MAI E ĐI HOK RỒI
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)
1. cho x, y, x >0 và x + y + z =< \(\frac{3}{2}\)
CMR : \(\sqrt{\left(X^2+\frac{1}{X^2}\right)}+\sqrt{Y^2+\frac{1}{Y^2}}+\sqrt{Z^2+\frac{1}{Z^2}}\)LỚN HƠN HOẶC BẰNG \(\frac{3}{2}\sqrt{17}\)
2. TÌM MAX : \(B=3-2x+\sqrt{\left(5-x^2+9x\right)}\)
3. Tìm min : \(M=\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}+3\sqrt{3x}\)
RÚT GỌN A=\(\frac{\sqrt{x}+3}{6+5\sqrt{x}+6}:\left(\frac{8x}{4x\sqrt{x-8x}}-\frac{3\sqrt{x}}{3x-12}-\frac{1}{\sqrt{x}+2}\right)\)
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}=3\sqrt{3}\left(x+2\right)\)
\(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
\(x-2\sqrt{x-1}-\left(x-1\right)\sqrt{x}+\sqrt{x^2-x}=0\)
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)