Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jimin

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

Nguyen Quynh Huong
13 tháng 2 2018 lúc 9:53

a, EB chung ; \(\widehat{E_1}=\widehat{E_2}\left(pg\right)\) \(\Delta EDB=\Delta EIB\left(ch-gn\right)\)

=> DB = BI ; ED = EI b, \(\Delta DBH=\Delta IBF\) ( DB = BI ; \(\widehat{D}=\widehat{I}=90^O\) ; \(\widehat{B_1}=\widehat{B_2}\) ) => BH = BF và DH = FI c, Ta co: EH = ED + DH; EF = EI + IF mà ED= EI ; DH = IF => EH = EF => △EHF cân E có K là trung diem cua HF => EK là trung trực (1) Ta co: △HBF cân B ( HB = BF) có K là trung diem cua HF => BK là trung trực (2) (1,2) => E,B,K thẳng hang d, Gọi A là giao diem cua EK và DI △EID cần E ( ED = EI) có EA là pg đồng thời là đg trung trực => EA ⊥ DI hay EK ⊥DI (3) Ta co: EK ⊥ HF (4) (3,4) => DI // HF I D H B K F E

Các câu hỏi tương tự
Halley Phạm
Xem chi tiết
nguyen hong long
Xem chi tiết
Ngô Bá Khá
Xem chi tiết
Jimin
Xem chi tiết
Dân fgh
Xem chi tiết
Chip Chip
Xem chi tiết
Sớm Mai
Xem chi tiết
Như Gia
Xem chi tiết
Bangtan Sonyeondan
Xem chi tiết