Bài 1 : Cho \(\dfrac{U+2}{U-2}\) = \(\dfrac{V+3}{V-3}\) và \(U^2\) + \(V^2\) = 52 .
Tính U ; V .
Bài 2 : Cho \(\dfrac{x}{y}=\dfrac{z}{t}\) . Cmr \(\dfrac{x.y}{z.t}=\dfrac{\left(x+y\right)^2}{\left(z+t\right)^2}\) .
Bài 3 : Cho \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=\text{4}\) . Tính M \(\dfrac{a-3b+2c}{a'-3b'+2c'}\) .
Bài 4 : Cho \(\left(a_2\right)^2=a_1.a_3;\left(a_3\right)^2=a_2.a_4\) .
Cmr \(\dfrac{\left(a_1\right)^2+\left(a_2\right)^2+\left(a_3\right)^2}{\left(a_2\right)^2+\left(a_3\right)^2+\left(a_4\right)^2}=\dfrac{a_1}{a_3}\) .
Bài 5 : Cho \(\dfrac{a}{c}=\dfrac{c}{b}\) . Cmr :
a) \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
b) \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-c}{a}\)
Cho \(\dfrac{bz+cy}{x\left(-ax+by+cz\right)}=\dfrac{cx+az}{y\left(ax-by+cz\right)}=\dfrac{ay+bx}{z\left(ax+by-cz\right)}\)
CMR : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)
b) \(\dfrac{x}{a\left(b^2+c^2-a^2\right)}=\dfrac{y}{b\left(a^2+c^2-b^2\right)}=\dfrac{z}{c\left(a^2+b^2-c^2\right)}\)
tính giá trị của mỗi biểu thức A,B,C,D rồi sắp xếp các kết quả tìm được theo thứ tự tăng dần:
A=\(\dfrac{5}{4}.\left(5-\dfrac{4}{3}\right).\left(-\dfrac{1}{11}\right)\) B=\(\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\)
C=\(\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\) D=\(\left(3\right).\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR : \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\left(\dfrac{a}{b}=\dfrac{c}{d}\ne1\right)\)
Giúp mk vs mai mk phải nộp rồi
A)\(-6.(-\frac{2}{3}).0,25\)
B)
\(-\frac{15}{4}.(\frac{-7}{15}).(-2\frac{2}{5})\)
C)
\(\left(-0,4\right)^2-\left(-0,4\right)^3.\left(-3\right)\)
D)
\(\left[\left(-2,7\right)^4\right]^5-\left[\left(-2,7\right)^2\right]^{10}\)
E)
\(\left(8^{14}:4^{12}\right):\left(16^6:8^2\right)\)
giúp mình nhé
mình cám ơn nhiều ❤❤❤
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
7. Cho \(\left|a\right|< 1\), \(\left|a-c\right|< 1999\), \(\left|b-1\right|< 1999\).
CMR: \(\left|ab-c\right|< 3998\)
Tính bằng cách hợp lí :
A=\(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{2}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)
B=\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
Thực hiện các phép tính sau
\(A=\frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{12}\)|
\(B=-3-\frac{2}{3}+\frac{3}{5}\left(-\frac{10}{9}-\frac{25}{3}\right)-\frac{5}{6}\)
\(C=\left(\frac{12}{35}-\frac{6}{7}+\frac{18}{14}\right):\frac{6}{-7}-\frac{-2}{5}-1\)
\(D=\left[\frac{-54}{64}-\left(\frac{1}{9}:\frac{8}{27}\right):\frac{-1}{3}\right]:\frac{-81}{128}\)
\(E=\left[\frac{193}{-17}\left(\frac{2}{193}-\frac{3}{386}\right)+\frac{11}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right)\frac{1931}{25}+\frac{9}{2}\right]\)