Rút gọn biểu thức:
C= \(\frac{\sqrt{y^3}-1}{y+\sqrt{y}+1}-\frac{y+3\sqrt{y}+2}{\sqrt{y}+1}\:\) ( với y >0 hoặc y=0)
cho x,y> 0 thỏa mãn xy+x+y=1. Tính tổng
\(S=2x\sqrt{\frac{1+y^2}{1+x^2}}+2y\sqrt{\frac{1+x^2}{1+y^2}}+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
Bài 1 : Trong các số \(3\sqrt{12}\) và \(2\sqrt{26}\) số nào lớn hơn ? Vì sao ?
bài 2 : Tìm x biết rằng \(\frac{5}{4}\sqrt{12x}-\sqrt{12x}-3=\frac{1}{6}\sqrt{12x}\)
bài 3 : Rút gọn biểu thức : \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}+\sqrt{y}}vớix>0,y>0\)
Các bạn ơi ! giúp mik với đi !!! Mai kiểm tra rồi
Help me !!!
Bài 1: cho a, b > 0 và a + b <= 1. CMR: \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}>=3\)
Bài 2: cho x, y, z >=0 thỏa mãn x + y + z >0. CMR: \(\dfrac{x}{4x+4y+z}+\dfrac{y}{4y+4z+x}+\dfrac{z}{4z+4x+y}< =\dfrac{1}{3}\)
Bài 3: cho x, y, z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm GTNN của \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2}+x^2+3}\)
Cho x, y \(\in R\) thỏa mãn:
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
Chứng minh rằng: \(x^3+y^3+3xy=1\)
Bài 1: Cho a = \(\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
CMR a2 -2a-2=0
Bài 2 Cho B = \(\frac{1+\sqrt{x+1}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}\)
Tính B sau khi thay x = a = \(\frac{\sqrt{3}}{2}\)
Bài 3: hãy biểu diễn \(\sqrt{\frac{3+\sqrt{5}}{2}}\) thành a+b\(\sqrt{5}\) với a và b thuộc Q
Tìm x biết,
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
b) \(\sqrt{x^2-4}-2\sqrt{x-2}\)=0
c)\(\sqrt{\frac{2x-3}{x-1}}=2\)
d) \(\sqrt{\frac{4x+3}{x+1}}=3\)
e)\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
f)\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\)
Cho biểu thức P = (\(\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)+\(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\)):(\(\frac{x+y+2xy}{1-xy}\)+1) (x,y lớn hơn hoặc bằng 0; x khác y; x và y khác 1)
a) Rút gọn
b) Tính P tại x = \(\frac{2}{2+\sqrt{3}}\)
c) Chứng minh P bé hơn hoặc bằng 1
1. Cho hai số a,b không âm : CMR \(\frac{a+b}{2}\) ≥ \(\sqrt{ab}\)
2. Với a ≥0, b≥0: CM \(\sqrt{\frac{a+b}{2}}\) ≥\(\frac{\sqrt{a}+\sqrt{b}}{2}\)
3. Tìm số nguyên tố thõa mãn đẳng thức sau:
\(\sqrt[3]{n+\sqrt{n^2+8}}+\sqrt{n-\sqrt{n^2}+8}=8\)
4. Tìm các số thực x,y,z thõa mãn :
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)