\(2^x\times2^{x+1}=10^{19}\div5^{19}\)
\(\Rightarrow2^{2x+1}=2^{19}\)
\(\Rightarrow2x+1=19\)
\(\Rightarrow2x=19-1\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=18\div2\)
\(\Rightarrow x=9\)
\(2^x.2^{x+1}=10^{19}:5^{19}\)
\(2^{x+x+1}=\left(10:5\right)^{19}\)
\(2^{2x+1}=2^{19}\)
\(\Rightarrow2x+1=19\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=9\)
Vậy \(x=9\)
\(2^x\)x \(2^{x+1}\)= \(10^{19}:5^{19}\)
\(\Leftrightarrow2^{2x+1}=\left(10:5\right)^{19}\)
\(\Leftrightarrow2^{2x+1}=2^{19}\)
\(\Leftrightarrow2x+1=19\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=9\)
Vậy x=9
\(2^x\)X \(2^{x+1}\)\(=\)\(\frac{10^{19}}{5^{19}}\)\(\Rightarrow\)\(2^{2x+1}\)\(=\)\(2^{19}\)
\(\Rightarrow\)\(x+1=19\)\(\Rightarrow\)\(x=18\)