Rút gọn\(\sqrt{6+2.\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2.\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}\)
Rút gọn \(A=\frac{\sqrt{6+2.\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2.\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
Rút gọn : A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}+\frac{3+\sqrt{x}}{\sqrt{x}-2}-\frac{2+\sqrt{x}}{\sqrt{x}-3}\right)\)
Rút gọn biểu thức: \(P=\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}-\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}+\frac{\left(\sqrt{5}-1\right).\sqrt[3]{2+\sqrt{5}}}{\sqrt{28}-10\sqrt{3}+\sqrt{3}}\)
Giúp mk nha!
Cho A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}+\frac{3+\sqrt{x}}{\sqrt{x}-2}-\frac{2+\sqrt{x}}{\sqrt{x}-3}\right)\)
Tìm tập xác định và rút gọn A
Rút gọn: \(A=\left(5+\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right).\sqrt{5-\sqrt{21}}\)
Tính:
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2\)
b) \(\left[\sqrt{4^2}\right]+\sqrt{\left(-4\right)^2}.\left(\sqrt{5}\right)^2-\sqrt{5^{-2}}\)
c) \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2\)
HỘ MK BÀI NÀY NHA MỌI NGƯỜI
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
rút gọn phân số sau:
A = \(\frac{1-\sqrt[1]{49}+\sqrt[1]{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\sqrt{\frac{64}{2}}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)