1, = \(\dfrac{-5x^4}{3}\)
2, = \(\dfrac{-2xy}{3}\)
\(20x^5\div\left(-12x\right)=\dfrac{-5}{3}x^4\)
\(6x^3y\div\left(-9x^2\right)=\dfrac{-2}{3}xy\)
1, = \(\dfrac{-5x^4}{3}\)
2, = \(\dfrac{-2xy}{3}\)
\(20x^5\div\left(-12x\right)=\dfrac{-5}{3}x^4\)
\(6x^3y\div\left(-9x^2\right)=\dfrac{-2}{3}xy\)
Thực hiện phép chia :
a) \(18\left(x-y\right)^{10}:2\left(x-y\right)^5\)
b) \(10\left(x-2\right)^{12}:\left(2-x\right)^{10}\)
c) \(-18\left(x-3\right)^5:2\left(3-x\right)^3\)
d) \(\left(x^2-6x+9\right):\left(x-3\right)\)
e) \(\left(x^2-x-2\right):\left(x+1\right)\)
Làm tính chia :
a) \(\left(\dfrac{5}{7}x^2y\right)^3:\left(\dfrac{1}{7}xy\right)^3\)
b) \(\left(-x^3y^2z\right)^4:\left(-xy^2z\right)^3\)
Tính :
a) \(5x^2y^4:10x^2y\)
b) \(\dfrac{3}{4}x^3y^3:\left(-\dfrac{1}{2}x^2y^2\right)\)
c) \(\left(-xy\right)^{10}:\left(-xy\right)^5\)
a)\(\left(a+b+c\right)^3-\left(a+b-c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3\)
b)\(2a^2b^2+2b^2c^2-2c^2a^2-a^4-b^4-c^4\)
c)\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-8\left(a+b+c\right)^2\)
d)\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5\)
Làm tính chia :
a) \(\left(x+y\right)^2:\left(x+y\right)\)
b) \(\left(x-y\right)^5:\left(y-x\right)^4\)
c) \(\left(x-y+z\right)^4:\left(x-y+z\right)^3\)
Làm tính chia :
a) \(5^3:\left(-5\right)^2\)
b) \(\left(\dfrac{3}{4}\right)^5:\left(\dfrac{3}{4}\right)^3\)
c) \(\left(-12\right)^3:8^3\)
Tính :
a) \(x^{10}:\left(-x\right)^8\)
b) \(\left(-x\right)^5:\left(-x\right)^3\)
c) \(\left(-y\right)^5:\left(-y\right)^4\)
Tính giá trị của biểu thức sau :
\(\left(-x^2y^5\right)^2:\left(-x^2y^5\right)\) tại \(x=\dfrac{1}{2};y=-1\)
chứng minh rằng với mọi số thực x,y luôn có :
\(\left(x^3+y^3\right)^2\le\left(x^2+y^2\right)\left(x^4+y^4\right)\)