2019(x-1) = 2020(y-1) và x+y= 4041. Với x không bằng 1 và y ko bằng 1
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
So sánh x = 20192020 + 1 / 20192019 + 1 và y = 20192019 + 2020 / 20192018 + 2020
Cho ( x-1)^2018 +| y + 1 | = 0. Tính giá trị biểu thức P= x^ 2019 . Y^ 2020 : (2x + y) ^ 2019+ 2020.
cho x/y=-2019,chứng tỏ rằng: x+y/x-y<1<x-y/x+y với y khác 0 và x khác + y
cho (x-1)2018+|y+1|=0.Tính giá trị biểu thức P=x2019Xy2020/(2x+y)2019+2020
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
cho 3 số thực dương x,y,z thỏa mãn : x^2+y^3+z=1.Chứng minh rằng x^2018+y^2019+z^2020<1