\(2004.2004\) \(2005.2003\)
\(=2004\left(2003+1\right)\) \(=\left(2004+1\right).2003\)
\(=2004.2003+2004.1\) \(=2004.2003+1.2003\)
\(=2004.2003+2004\) \(=2004.2003+2003\)
ta thấy \(2004.2003=2004.2003\) mà \(2004>2003\)
\(\Rightarrow2004.2004>2005.2004\)
2004x2004=4016016<4056195=2015x2013 => 2012^2<2015x2013
\(2004.2004>2005.2003\)
Vì 4.4=16
5.3=15
2004 x 2004 2005 x 2003
(2003 + 1) x 2004 (2004 + 1 ) x 2003
2003 x 2004 + 2004 2004 x 2003 + 2003
Ta thấy 2003 x 2004 + 2004 > 2004 x 2003 + 2003
==>> 2004 x 2004 > 2005 x 2003
hãy tk