\(2^{2019}-2=2\left(2^{2018}-1\right)\)
\(=2\left(2^2-1\right)\cdot A=2\cdot3\cdot A⋮3\)
2 \(\equiv\) - 1 (mod 3)
22019 \(\equiv\) (-1)2019 (mod3)
22019 \(\equiv\) -1 (mod 3)
- 2 \(\equiv\) - 2 (mod 3)
22019 - 2 \(\equiv\) -1 - 2 (mod 3)
22019 - 2 \(\equiv\) -3 (mod 3)
0 \(\equiv\) -3 (mod 3)
22019 - 2 \(\equiv\) 0 (mod 3)
\(\Leftrightarrow\) 22019 - 2 ⋮ 3