Cho tam giác ABC có 3 góc nhọn. Vẽ đường tròn tâm O, đường kính BC, lần lượt cắt AB và AC tại D,E; BE cắt CD tại H. Chứng minh AH vuông góc BC
Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt các cạnh AB, AC theo thứ tự ở D, E
Gọi K là giao điểm của BE và CD. Chứng minh rằng AK vuông góc với BC.
Cho tam giác ABC có góc A=90độ, AH vuông góc với BC. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn đó. Tiếp tuyến tại D của đường tròn cắt CA tại E.
1)Cho AB=3cm,AC=4cm.Tính AH
2) Chứng minh tam giác BCE cân
3)Chứng minh BE là tiếp tuyến của (A;AH)
4)Kẻ KP vuông góc HD (P thuộc HD).CM: BD đi qua trung điểm của KP
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
1) Cho DABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC). Đường cao BE của tam giác kéo dài cắt đường tròn tâm O tại K. Kẻ KD vuông góc với đường thẳng BC tại D.
a) Chứng minh bốn điểm K, E, D, C cùng thuộc một đường tròn. Suy ra KB là tia phân giác của
b) Từ K kẻ KI vuông góc với đường thẳng AB tại I. Chứng minh ba điểm D, E, I thẳng hàng.
c) Qua E kẻ đường thẳng vuông góc với đường thẳng OA, cắt đường thẳng AB tại H. Chứng minh CH // KI
Cho tam giác ABC nhọn . Vẽ đường tròn đường kính BC cắt AB tại M , AC tại N .
a. Chứng minh BN vuông với AC , CM vuông góc với AB.
b. Gọi H là giao điểm của BN và CM. Chứng minh AH vuông với BC.
Bài 5 (BTVN): Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB,
AC lần lượt ở hai điểm D và E.
a)Chứng minh CD⊥AB, BE⊥AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK⊥BC
Cho tam giác ABC nhọn,đường tròn tâm O,đường kính BC cắt 2 cạnh AB,AC lần lượt tại M và N.Gọi H là giao điểm của BN và CM
a)Chứng minh AH vuông góc với BC
b) Chứng minh MN<BC
c)Gọi I là trung điểm MN.Chứng minh OI vuông góc với MN
cho ΔABC vuông tại A, có đường cao AH. Gọi K là trung điểm AH. Từ H hạ vuông góc với AB và AC tại D và E. Đường tròn (K;AK) cắt đường tròn (O) đường kính BC tại I, AI cắt BC tại M. Chứng minh:
a) 5 điểm A,I,D,H,E thẳng hàng
b) MK ⊥ AO
c) 4 điểm M,D,K,E thẳng hàng
d) MD.ME=MH2