1,Giải Pt
a,\(\frac{3x-7}{2}+\frac{x+1}{3}=-16\)
b,\(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c,\(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5\left(5-2x\right)}{6}\)
e,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Cho biểu thức: \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a) Rút gọn M
b) Tìm các giá trị nguyên của x để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
bài 1 : thực hiện các phép tính
a. \(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}\)
b.\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
c.\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
d.\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
e.\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
f.\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
g.\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
h.\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
i.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
bài 1: Thực hiện các phép tính
a.\(\frac{4x-1}{3x^2y}-\frac{7x-2}{3x^2y}\)
b.\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
c.\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
d.\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
e. \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
f..\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
g. \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
h.\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
i.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
Giair pt:
c, x ( 3x-1) (3x+1) (3x+2) =8
d, (x+1) (2x+3) (2x+5) (x+3)=45
e,x4+ 3x3 - 15x2 - 19x + 3 = 0
f, \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=\frac{1}{3}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\frac{3x-3}{x^2-9}=\frac{x+1}{x+3}+\frac{1}{x-3}\)