Sửa đề: \(\frac12+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\cdots+\frac{1}{2^{10}}\)
Đặt \(A=\frac12+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\cdots+\frac{1}{2^{10}}\)
=>\(2A=1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^9}\)
=>\(2A-A=1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^9}-\frac12-\frac{1}{2^2}-\cdots-\frac{1}{2^{10}}\)
=>\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}\)