\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{n\left(n+2\right)}=\frac{20}{41}\)
\(\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{n\left(n+2\right)}\right)\cdot2=\frac{20}{41}\cdot2\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{n\left(n+2\right)}=\frac{40}{41}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{40}{41}\)
\(1-\frac{1}{n+2}=\frac{40}{41}\)
\(\frac{1}{n+2}=1-\frac{40}{41}\)
\(\frac{1}{n+2}=\frac{1}{41}\)
\(\Rightarrow n+2=41\)
\(n=41-2\)
\(n=39\)