Khó hiểu chút, bạn cố gắng:
Ta thấy: 1+2+3= \(\frac{3}{2}\).(1+3) ; 1+2+3+4=\(\frac{4}{2}.\left(1+4\right)\)...... ; tương tự ta được 1+2+3..+16=\(\frac{16}{2}.\left(1+16\right)\)
Từ trên suy ra: \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16\left(1+2+...+16\right)}=1+\frac{1}{2}.3+\frac{1}{3}.\frac{3}{2}\left(1+2+3\right)+...+\frac{1}{16}.\frac{16}{2}.\left(1+2+...+16\right)\) \(=1+\frac{1}{2}.3+\frac{1}{2}.4+...+\frac{1}{2}.17=\frac{1}{2}.\left(3+4+...+17\right)\)
\(=1+\frac{1}{2}\left(3+4+...+17\right)=1+\frac{1}{2}.\frac{15}{2}.\left(3+17\right)\)
\(=1+75=76\)