\(100+2015^{2015}:2015^{2014}-\left[\left(23+77\right):10^2+18+2015^0\right]\)
=\(100+2015-\left[100:10^2+18+1\right]\)
=\(100+2015-\left[1+18+1\right]\)
=\(100+2015-20\)
=\(2095\)
Hok tốt
\(100+2015^{2015}:2015^{2014}-\left[\left(23+77\right):10^2+18+2015^0\right]\)
=\(100+2015-\left[100:10^2+18+1\right]\)
=\(100+2015-\left[1+18+1\right]\)
=\(100+2015-20\)
=\(2095\)
Hok tốt
Tính các tổng sau
\(a,S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)
\(b,S=\left(-2\right)+4+\left(-6\right)+8+...+\left(-2014\right)+2016\)
\(c,S=1+\left(-3\right)+5+\left(-7\right)+...+2013+\left(-2015\right)\)
\(d,S=\left(-2015\right)+\left(-2014\right)+\left(-2013\right)+...+2015+2016\)
Hãy so sánh:\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2014}-1\right)vàB=\left(-1\right)^{2015}:2015\)
tính tích:
\(\left(1-\frac{1}{2014}\right).\left(1-\frac{2}{2014}\right).\left(1-\frac{3}{2014}\right)...\left(1-\frac{2015}{2014}\right)\)
Tìm giá trị lớn nhất của các biểu thức sau :
A = \(\frac{2014}{\left|x\right|+2015}\)
B = \(\frac{\left|x\right|+2014}{-2015}\)
C = \(\frac{\left|x\right|+2014}{2015}\)
\(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}< hoặc=0\)
Vậy X bằng.....
Tính tích
\(\left(1-\frac{1}{2014}\right)\times\left( 1-\frac{2}{2014}\right)\times\left(1-\frac{3}{2014}\right).....\left(1-\frac{2015}{2014}\right)\)
Tính S :
\(S=\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)\) \(+...+\frac{1}{2015}\left(1+2+...+2014+2015\right)\) \(+\frac{1}{2016}\left(1+2+...+2015+2016\right)\)
Tính S :
\(S=\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)\) \(+...+\frac{1}{2015}\left(1+2+...+2014+2015\right)\) \(+\frac{1}{2016}\left(1+2+...+2015+2016\right)\)
Tính nhanh
\(M=2^{2015}-\left(2^{2014}+2^{2013}+....+2^1+2^0\right)\)