Cho tam giác ABC cân tại B có AB < AC nội tiếp trong đường tròn (O). Gọi (d) là tiếp tuyến với đường tròn tại điểm A. Một đường thẳng song song với (d) cắt các cạnh AB, AC và đường thẳng BC lần lượt tại D, E và I. a) Chứng minh rằng số do hai cung nhỏ BA và BC bằng nhau. b) Chứng minh rằng góc ABC = AED. c) Chứng minh tứ giác BCED nội tiếp. d) Chứng minh rằng IB.IC =
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AH (H thuộc BC), gọi M là điểm chính giữa cung AC. Tia BM cắt AC tại E cắt tiếp tuyến tại C của (O) tại F. OM cắt AC tai K. 1) Chứng minh tứ giác AHOK nội tiếp. 2) Chứng minh tam giác CEF cân 3) Chứng minh OM tiếp xúc với đường tròn ngoại tiếp tam giác AOB
Bài 1: Cho (O;R) đường kính AB. Góc I là diểm nằm giữa A và O. Qua I vẽ dây cung CD vuông góc với OA. Dụng các tiếp tuyến tại A và B của đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt ở E và F.
a) Chứng minh 4 điểm A,E,C,O cùng thuộc 1 đường tròn.
b) Tính độ dài CI biết AB =20 cm , AI =4cm
c) Cm góc ÈO=90 độ và AE.BE=R^2
cho tam giác nhọn ABC nội tiếp đường tròn o, đường cao BD, CE cắt nhau tại H, AH cắt BC tại F, gọi M,N lần lượt là hình chiếu của B,C lên tiếp tuyến tại A của (o). Chứng minh 3 đường MD, NE, AH đồng quy
Cho đường tròn tâm O và dây BC cố định. lấy điểm A ở chính giữa cung BC nhỏ và M trên cung BC lớn sao cho MC >= MB. Đường MA cắt tiếp tuyến qua C của đường tròn tâm O và BC lần lượt tại Q, I. Đường MB cắt CA tại P.
a. Chứng minh rằng PQCM nội tiếp và PQ song song với BC
b. Tiếp tuyến tại A cắt tiếp tuyến tại C ở N. Chứng minh 1/CI +1/CQ=1/CN
c. Chứng minh rằng MB.MC=IB.IC+IM^2
d. Khi M di động, tìm vị trí M để bán kính đường trong ngoại tiếp tam giác MBI có độ dài max
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, nội tiếp đường tròn (O). M là điểm chính giữa cung AC. Tia BM cắt AC tại E cắt tiếp tuyến tại C của (O) tại F. OM cắt AC tại K.
a)Chứng minh tứ giác AHOK nội tiếp.
b)Chứng minh tam giác CEF cân
c)Chứng minh OM tiếp xúc với đường tròn ngoại tiếp tam giác AOB
Cho đường tròn (O,3cm) và điểm S cách O một khoảng bằng 5cm. Qua S kẻ tiếp tuyến SB với đường tròn (O) (B là tiếp điểm). Qua B kẻ đường thẳng vuông góc với OS cắt OS và (O) lần lượt tại K, C. a, Tính BC b, Chứng minh SC là tiếp tuyến của (O) c, Lấy N là điểm bất kì trên cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn cắt SB, SC lần lượt tại E và F. Tính chu vi tam giác SEF
cho tam giác abc có 3 góc nhọn ( AB < AC) nội tiếp đường tròn tâm o. kẻ đường thẳng d là tiếp tuyến tại A của đường tròn tâm o . Gọi d' là đường thẳng đi qua B và song song với d; d' cắt các đường thẳng Ao , AC lần lượt tại E, D. Kẻ À là đường cao của tam giác ABC ( F thuộc BC )
a) Chướng minh rằng tứ giác ABFE nội tiếp
b) chướng minh rằng AB2 = AD * AC
c) Gọi M,N lần lượt là trung diểm của AB, BC . CMR: MN vuông góc với EF
Giúp mình với