a) \(\sqrt{2x}=12\left(đk:x\ge0\right)\)
\(2x=144\)
\(x=72\)
b) \(\sqrt{9x^2-6x}+1=10\)\(\left(Đk:x\le0;x\ge\dfrac{2}{3}\right)\)
\(\sqrt{9x^2-6x}=9\)
\(9x^2-6x=81\)
\(\left(3x-1\right)^2=82\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{82}+1}{3}\\x=\dfrac{1-\sqrt{82}}{3}\end{matrix}\right.\)
c) \(x^2\sqrt{5}-\sqrt{125}=0\)
\(x^2\sqrt{5}=5\sqrt{5}\)
\(x^2=5\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)