a/ Để hàm số xác định trên R
\(\Leftrightarrow\left(m^2-1\right)x^2+2\left(m+1\right)x+5>0\) \(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1>0\\\Delta'=\left(m+1\right)^2-5\left(m^2-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2>1\\-m^2+m+3< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\\\left[{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)
b/ \(a^2b^2=a^2+4b^2\ge2\sqrt{a^2.4b^2}=4ab\)
\(\Rightarrow ab\ge4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\sqrt{2}\\b=\sqrt{2}\end{matrix}\right.\)