Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nghịch Dư Thủy

1. CMR: Nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\) và a + b + c = abc thì \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

2. Cho xy + x + y = -1 và \(x^2y+xy^2\) = -12 tính \(x^3+y^3\)

3.Tìm GTNN và GTLN của: A = \(\dfrac{2x+1}{x^2+2}\) B = \(\dfrac{4x+3}{x^2+1}\)

Nhã Doanh
29 tháng 6 2018 lúc 15:40

3.

\(A=\dfrac{2x+1}{x^2+2}=\dfrac{x^2+2-x^2+2x-1}{x^2+2}=\dfrac{\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2}\)

Ta có: \(\dfrac{\left(x-1\right)^2}{x^2+2}\ge0\forall x\in R\)

\(A=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le1\)

Vậy: \(Max_A=1\Leftrightarrow x=1\)

* \(A=\dfrac{2x+1}{x^2+2}=\dfrac{2\left(2x+1\right)}{2\left(x^2+2\right)}=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{-x^2-2+x^2+4x+4}{2\left(x^2+2\right)}\)

\(=-\dfrac{1}{2}+\dfrac{x^2+4x+4}{x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+2\right)^2}{x^2+2}\ge-\dfrac{1}{2}\)

Vậy: \(Min_A=-\dfrac{1}{2}\Leftrightarrow x=-2\)

* \(B=\dfrac{4x+3}{x^2+1}\) ( 1 cách khác)

\(\Rightarrow B\left(x^2+1\right)=4x+3\)

\(\Rightarrow Bx^2-4x+B-3=0\) (1) \(\left(a=B;b=-4,c=B-3\right)\)

* Với B = 0, pt (1) có nghiệm x = \(-\dfrac{3}{4}\)

* Với B ≠ 0, pt (1) có nghiệm khi và chỉ khi:

\(\Delta=b^2-4ac\ge0\)

\(\Rightarrow\left(-4\right)^2-4.B.\left(B-3\right)\ge0\)

\(\Rightarrow16-4B^2+12B\ge0\)

\(\Rightarrow\left(B-4\right)\left(B+1\right)\ge0\)

\(\Rightarrow-1\le B\le4\)

Suy ra: \(Min_B=-1\Leftrightarrow x=\dfrac{-b}{2a}=\dfrac{4}{2.\left(-1\right)}=-2\)

\(Max_B=4\Leftrightarrow x=\dfrac{-b}{2a}=\dfrac{4}{2.4}=\dfrac{1}{2}\)

hattori heiji
29 tháng 6 2018 lúc 14:15

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}=4\)

<=>\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) +\(2\left(\dfrac{c}{abc}+\dfrac{b}{abc}+\dfrac{a}{abc}\right)=4\)

<=> \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a+b+c}{abc}\right)=4\)

<=> \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{abc}{abc}\right)=4\) (vì a+b+c =abc)

<=> \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\left(đpcm\right)\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Thuy Tran
Xem chi tiết
Phan Thị Huyền
Xem chi tiết
Lê hữu khương
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Hoàng Nam
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết