Bài 1:
Ta có:
\(B=3+3^3+3^5+...+3^{1995}+3^{1997}\)
\(\Rightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1993}+3^{1995}+3^{1997}\right)\)
\(\Rightarrow B=3\left(1+3^2+3^4\right)+...+3^{1995}.\left(1+3^2+3^4\right)\)
\(\Rightarrow B=3.\left(1+9+81\right)+...+3^{1995}.\left(1+9+81\right)\)
\(\Rightarrow B=3.91+...+3^{1995}.91\)
\(\Rightarrow B=\left(3+...+3^{1995}\right).91⋮13\)
\(\Rightarrowđpcm\)
B=3+33+35+.............+31995+31996
B= ( 3+33+35+37+39+311) +.....+ (31991+.....+31997)
B= 336+.... +336 :13
hop so