Cho (O;R) và dây AB. Các tiếp tuyến tại A và B, của (O) cắt nhau tại C. a) C/m: Tứ giác ACBO nội tiếp. b) Lấy điểm I trên đoạn AB ( IB < IA). Từ điểm I kẻ đường thẳng vuông góc với OI cắt AC tại E và cắt đường thẳng BC tại D. C/m: góc IBO = góc IDO. c) C/m: OE = OD. d) C/m: Cho góc AOB = 120°. Tính độ dài đoạn thẳng OE khi OI = 2R/3
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho tam giác ABC có \(\widehat{A}>\widehat{B}>\widehat{C}\) nội tiếp trong đường tròn (O), ngoại tiếp đường tròn (I). Cung nhỏ BC có M là điểm chính giữa. N là trung điểm của cạnh BC. Điểm E đối xứng với I qua N. Đường thẳng ME cắt đường tròn (O) tại điểm thứ hai là Q. Lấy điểm K thuộc BQ sao cho QK=QA. Chứng minh:
a) Điểm Q thuộc cung nhỏ AC của đường tròn (O)
b)Tứ giác AIKB nội tiếp và BQ=AQ+CQ
Cho (O;R) và dây AB. Các tiếp tuyến tại A và B, của (O) cắt nhau tại C. Tứ giác ACBO nội tiếp. Lấy điểm I trên đoạn AB ( IB < IA). Từ điểm I kẻ đường thẳng vuông góc với OI cắt AC tại E và cắt đường thẳng BC tại D. góc IBO = góc IDO. OE = OD. C/m: Cho góc AOB = 120°. Tính độ dài đoạn thẳng OE khi OI = 2R/3
Cho tam giác ABC vuông tại A, M thuộc AC, đường tròn tâm O đường kính MC cắt BC tại E, cắt tia BM ở F. AF cắt (O) tại điểm thứ hai là I. Gọi D là giao điểm thứ hai của (O) với AE. Nếu điểm M chạy trên đoạn AC thì điểm F chạy trên đường cố định nào?
Cho tam giác ABC vuông tại A, M thuộc AC, đường tròn tâm O đường kính MC cắt BC tại E, cắt tia BM ở F. AF cắt (O) tại điểm thứ hai là I. Gọi D là giao điểm thứ hai của (O) với AE. Nếu điểm M chạy trên đoạn AC thì điểm F chạy trên đường cố định nào?
Cho đường tròn O và điểm A nằm ngoài đường tròn. Vẽ tiếp tuyến AB, AC. AO cắt BC tại M
a) c/m AO⊥BC
b) vẽ đường kính BE và AE cắt đường tròn tại F. Gọi G là trung điểm của EF, OG cắt BC tại H. c/m OM.OH= OH.OG
c/ C/m EH là tiếp tuyến của đường tròn tâm O
Cho tam giác ABC nội tiếp (O). Vẽ dây AD // BC.Các tt tại A và B cắt nhau tại E. AC cắt BD tạiI.
1) C/m ABOI nt
2) OI vuông góc EI
3) M e đoạn BE, BD cắt AE tại N. MN cắt AB tại K. C/m KM/KN = BM/AN