1.
Cho tam giác ABC vuông cân tại A. Qua A kẻ đường xy không cắt cạnh BC. Từ B và C vẽ BM vuông góc xy, CE vuông góc với xy ( M,E thuộc xy ). CMR: ME=BM+CE
2.
Cho tam giác ABC cân tại A. Kẻ hai đường trung trực d1,d2 của hai cạnh AB, AC chúng cắt nhau tại O, M là trung điểm của BC, d1 cắt AB tại E, d2 cắt AC tại F
a) c/m: Tam giác AEO = tam giác AFO
b) c/m: A,O,M thẳng hàng
c) c/m: EF//BC
d) Tính cạnh bên của tam giác ABC biết AM = 4cm, BC = 6cm
3.
Cho tam giác ABC cân tại A. Trên tia đối của các tia BC, CB thứ tự lấy E,F sao cho BE = CF. Kẻ BH vuông góc AE tại H, kẻ CK vuông góc AF tại K. CMR:
a) BH = CK
b) BC//CK
Các bạn làm giúp mik nha vẽ đc hình càng tốt mik sẽ tick cho các bạn
Câu 3:
a: Xét ΔABE và ΔACF có
AB=AC
\(\widehat{ABE}=\widehat{ACF}\)
BE=CF
Do đó: ΔABE=ΔACF
Suy ra: BE=CF và \(\widehat{HAB}=\widehat{KAC}\)
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
b: Xét ΔADE có AH/AE=AK/AF
nên HK//EF
hay HK//BC