Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho góc ABN = góc ACM = 15 độ. Gọi I là giao điểm của MC và NB. Gọi H,E,D lần lượt là trung điểm của BC,BN,CM.
a) So sánh tam giác ABN và tam giác ACM.
b) C/m tam giác ADE đều.
c) C/m 3 điểm A,I,H thẳng hàng.
d) Tính góc DHE
Cho tam giác ABC cân tại A (BAC <90°), Kẻ BI vuông góc với AC tại 1. Trên cạnh BC lấy điểm M bất kỳ (M khác B và C). Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ M đến các cạnh AB, AC, BI. 1) Chứng minh rằng tam giác DBM = tam giác FMB. 2) Cho BC = 10cm, CI = 6cm. Tính tổng MD + ME. 3) Trên tia đối của tia CA lấy điểm K sao cho CK = EI. Chứng minh BC đi qua trung điểm của đoạn thẳng DK.
Cho tam giác ABC cân tại A . Kẻ BD vuông góc với đường thẳng AC tại D . Lấy điểm E bất kì trên cạnh BC ( E khác B , khác C ) . Kẻ EF , EG , EH lần lượt vuông góc với AB ,AC , BD .
1. Chứng minh rằng tam giác HBE bằng tam giác FEB
2. Chứng minh rằng EF + EG = BD
3. Trên tia đối của tia CA , lấy điểm K sao cho KC = BF ; BC cắt FK tại I . Chứng minh rằng I là trung điểm của FK
4. Nêu cách xác định vị trí của điểm E trên BC để tam giác EGH vuông cân
Giúp mk câu 3;4 thôi ạ!
cho tam giác nhọn ABC. Vẽ phía ngoài tam giác ABC các tam giác đều ABD VÀ ACE. Gọi M là giao điểm DC và BE. Chứng minh:
a, tam giác ABE =TAM GIÁC ADC
b, BMC=1200
Cho tam giác ABC có góc A nhọn. Vẽ phía ngoài tam giác đó các tam giác ABM, ACN vuông cân tại A, BN và CM cắt nhau tại D. a, Cm rằng AM^2 + AN^2 = MN^2+BC^2/2 b, cm DA là phân giác của góc BNC và góc BAC = góc BMC+ góc BNC
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
:)) giúp mính nhé!! Hehe
cho tam giác ABC nhọn. Dựng phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của BE với CD. Chứng minh tam giác ADC = tam giác ABE
Cho tam giác ABC cân tại A ( A <90 độ) Vẽ phía ngoài tam giác là tam giác ABE vuông tại B. Gọi H là trung điểm BC. Trên tia đối tia Ah lấy I sao cho AI = BC . CM: BI = CE và BI ⊥ CE