1/ Cho góc vuông xOy và 2 điểm A,B trên cạnh Ox( A nằm giữa O và B), điểm M bất kì trên Oy. Đường tròn (T) đường kính AB cắt tia MA,MB lần lượt tại C,E. Tia OE cắt (T) tại F.
a/C/m: A,O,M,E cùng thuộc 1 đường tròn
b/ C/m: \(\widehat{OEA}=\widehat{ACF}\) và tứ giác OCFM là hình thang
c/ C/m: BE.BM=OB.BA
d/ Xđ vị trí điểm M để tứ giác OCFM là hbh. Tìm mối liên hệ giữ OA và OB để tứ giác đó là hình thoi.
2/ Tìm tất cả các số nguyên m để pt: \(x^2-mx+2002=m\) có nghiệm nguyên
a; ta có : BEA = 90o (góc nội tiếp chắng nữa đường tròn)
BAE + ABE = 90o (BEA = 90o)
mà OMB + OBM = 90o (xOy = 90o)
\(\Rightarrow\) BAE = EMO
mà BAE + EAO =180o
\(\Rightarrow\) EAO + EMO = 180o (BAE = EMO)
xét tứ giác AOME
ta có : EAO + EMO = 180o
mà EAO và EMO là 2 góc đối nhau của tứ giác AOME
\(\Rightarrow\) tứ giác AOME là tứ giác nội tiếp
\(\Leftrightarrow\) A,O,M,E cùng thuộc 1 đường tròn (đpcm)
2) pt\(\Leftrightarrow x^2-mx+2002-m=0\).
Để phương trình có nghiệm thì:
\(\Delta\ge0\Leftrightarrow m^2-4.\left(2002-m\right)\ge0\) (*)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2002-m\end{matrix}\right.\)
Suy ra: \(x_1+x_2+x_1x_2=2002\Leftrightarrow x_1\left(1+x_2\right)+x_2+1=2003\)
\(\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)=2003\).
Do \(x_1;x_2\in Z\) nên \(x_1+1\inƯ\left(2003\right)=\left\{1;2003;-1;-2003\right\}\)
\(\Leftrightarrow x_1\in\left\{0,2002,-2,-2004\right\}\).
Thay lần lượt các giá trị x vào phương trình ta được:
Với \(x=0\Rightarrow m=2002\). (thỏa mãn *).
Với \(x=2002\Rightarrow m=20,96\) (loại)
Với \(x=-2\Rightarrow m=-2006\) (thỏa mãn *)
Với \(x=-2003\Rightarrow m=-2003\) (thỏa mãn *)