1:
a: \(A=\left(4x+3\right)^2-2x\left(x+6\right)-5\left(x-2\right)\left(x+2\right)\)
\(=16x^2+24x+9-2x^2-12x-5\left(x^2-4\right)\)
\(=14x^2+12x+9-5x^2+20\)
\(=9x^2+12x+29\)
b: \(A=9x^2+12x+29=9x^2+12x+4+25=\left(3x+2\right)^2+25>=25>0\forall x\)
=>A luôn dương với mọi x
2:
\(\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=\dfrac{2x^2\left(x^2-3\right)+x\left(x^2-3\right)+\left(x^2-3\right)}{x^2-3}=2x^2+x+1\)