Violympic toán 7

Felix MC-Gamer

1: \(A=\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-4x^2}+1\right)\)

a, Tìm tập xác định và rút gọn A

b, x = ? để A>0, A<0

2: Tìm a, b để \(x^4+ax^3+b⋮x^2-1\) (lưu ý: chứng mình bằng 2 phương pháp)

3: Rút gọn \(\dfrac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}\)

4: Cho 2a, 3b, 4c tỉ lệ thuận với 3; 4; 5 và a - b + 2c = 1. Tính 2a + b - 3c

5: Cho 2a, 3b, 4c tỉ lệ ngược với 3; 4; 5 và a - b + 2c = 1. Tính 2a + b - 3c

6: Cho x + y + z = 1. Tìm min K = \(x^2+y^2+z^2\)

Akai Haruma
Akai Haruma Giáo viên 21 tháng 6 2018 lúc 17:05

Bài 2:

Để \(x^4+ax^3+b\vdots x^2-1\) thì \(x^4+ax^3+b\) phải được viết dưới dạng :

\(x^4+ax^3+b=(x^2-1)Q(x)\) với $Q(x)$ là đa thức thương.

Thay $x=1$ và $x=-1$ lần lượt ta có:

\(\left\{\begin{matrix} 1+a+b=(1^2-1)Q(1)=0\\ 1-a+b=[(-1)^2-1]Q(-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=-1\\ -a+b=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=0\\ b=-1\end{matrix}\right.\)

PP 2 xin đợi bạn khác giải quyết :)

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 21 tháng 6 2018 lúc 17:12

Bài 3:

Ta có: \(\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{5+4-4\sqrt{5}}}\)

\(=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{(2-\sqrt{5})^2}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9(\sqrt{5}-2)}=\frac{\sqrt{3}(2-3-4)}{-17+8\sqrt{5}}=\frac{-5\sqrt{3}}{-17+8\sqrt{5}}\)

\(=\frac{5\sqrt{3}}{17-8\sqrt{5}}\)

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 21 tháng 6 2018 lúc 17:00

Bài 1:

a) ĐKXĐ: \(\left\{\begin{matrix} 1-4x^2\neq 0\\ \frac{4x^2-x^4}{1-4x^2}+1\neq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\neq \frac{\pm 1}{2}\\ \frac{1-x^4}{1-4x^2}\neq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\neq \frac{\pm 1}{2}\\ x\neq \pm 1\end{matrix}\right.\)

Rút gọn:

\(A=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{4x^2-x^4}{1-4x^2}+1\right)\)

\(=\frac{4x-x^3-x+4x^3}{1-4x^2}:\frac{1-x^4}{1-4x^2}=\frac{3x+3x^3}{1-4x^2}.\frac{1-4x^2}{1-x^4}\)

\(=\frac{3x(x^2+1)}{1-x^4}=\frac{3x(x^2+1)}{(x^2+1)(1-x^2)}=\frac{3x}{1-x^2}\)

b)

\(A=\frac{3x}{1-x^2}>0\Leftrightarrow \left[\begin{matrix} 3x>0, 1-x^2>0\\ 3x<0, 1-x^2< 0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x>0; -1< x< 1\\ x< 0;\text{x>1 or x< -1}\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} 0< x< 1\\ x< -1\end{matrix}\right.\)

\(A=\frac{3x}{1-x^2}< 0\Leftrightarrow \left[\begin{matrix} 3x>0; 1-x^2< 0\\ 3x< 0; 1-x^2>0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x>0; \text{x>1 or x< -1}\\ x< 0; -1< x< 1\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x>1\\ -1< x< 0\end{matrix}\right.\)

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 22 tháng 6 2018 lúc 6:19

Bài 4:

Theo đề bài ta đặt: \(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}=t\)

\(\Rightarrow \left\{\begin{matrix} a=\frac{3}{2}t\\ b=\frac{4}{3}t\\ c=\frac{5}{4}t\end{matrix}\right.\)

Do đó: \(a-b+2c=1\)

\(\Leftrightarrow \frac{3}{2}t-\frac{4}{3}t+\frac{5}{2}t=1\)

\(\Leftrightarrow \frac{8}{3}t=1\Rightarrow t=\frac{3}{8}\)

Suy ra: \(2a+b-3c=3t+\frac{4}{3}t-\frac{15}{4}t=\frac{7}{12}t=\frac{7}{12}.\frac{3}{8}=\frac{7}{32}\)

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 22 tháng 6 2018 lúc 6:35

Bài 5:

Theo đề bài ta đặt:

\(\frac{2a}{\frac{1}{3}}=\frac{3b}{\frac{1}{4}}=\frac{4c}{\frac{1}{5}}=t\)\(\Rightarrow \left\{\begin{matrix} a=\frac{t}{6}\\ b=\frac{t}{12}\\ c=\frac{t}{20}\end{matrix}\right.\)

Do đó: \(a-b+2c=1\)

\(\Leftrightarrow \frac{t}{6}-\frac{t}{12}+\frac{t}{10}=1\Leftrightarrow \frac{11}{60}t=1\Rightarrow t=\frac{60}{11}\)

Suy ra:

\(2a+b-3c=\frac{t}{3}+\frac{t}{12}-\frac{3t}{20}=\frac{4}{15}t=\frac{4}{15}.\frac{60}{11}=\frac{16}{11}\)

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 22 tháng 6 2018 lúc 6:39

Bài 6:

Ta có:

\(x^2+y^2+z^2-xy-yz-xz=\frac{x^2-2xy+y^2}{2}+\frac{y^2-2yz+z^2}{2}+\frac{z^2-2xz+x^2}{2}\)

\(=\frac{(x-y)^2}{2}+\frac{(y-z)^2}{2}+\frac{(z-x)^2}{2}\geq 0, \forall x,y,z\in\mathbb{R}\)

Do đó:

\(x^2+y^2+z^2\geq xy+yz+xz\)

\(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)

\(\Rightarrow 3(x^2+y^2+z^2)\geq x^2+y^2+z^2+2(xy+yz+xz)=(x+y+z)^2\)

Do đó:

\(K=x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{1}{3}\)

Vậy \(K_{\min}=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
* L~O~V~E * S~N~O~W *

Câu 1 : (4d) Tính giá trị của biểu thức :

\(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)

\(b,B=1+3^2+3^3+........+3^{2018}\)

Câu 2 : (5d)

a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\)

b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\)

c, Tìm x;y;z biết rằng :\(xy=z;yz=4x;xz=9y\)

Câu 3 : (5d)

a, Biết xyz = 1. Tính tổng :\(A=\dfrac{5}{x+xy+1}+\dfrac{5}{y+yz+1}+\dfrac{5}{z+zx+1}\)

b, Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR:\dfrac{3\cdot a^6+c^6}{3\cdot b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(b+d\ne0\right)\)

c, Cho :\(a;b;c>0;\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+d-c}{c}\)

Tính giá trị biểu thức :

\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)

Câu 4 : (4d)

a, Tìm giá trị nhỏ nhất của biểu thức :

\(A=\left|2016-x\right|+\left|2017-x\right|\left|2018-x\right|\)

b, Cho biểu thức : \(B=\dfrac{8-x}{x-3}\). Tìm các giá trị nguyên của x để B có giá trị nhỏ nhất.

Câu 5 : (2d) { Câu dễ nhất lun nè!!!!!}

Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{z}{x+y+t}=\dfrac{t}{x+y+z}\)

CMR : A là một số nguyên, biết :

\(A=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{x+t}{y+z}\)

Đây là đề thi để loại hsg ai làm đc làm hộ mk nhé, đặc biệt là câu 3a và câu 4b! Thanks nhìu !!!!!!!!!!

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN