\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2010}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2009}{2010}=\dfrac{1}{2010}\)
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2010}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2009}{2010}=\dfrac{1}{2010}\)
tính C=2010/1+2009/2 + 2008/3 +...+ 1/2010:1\2+1/3+1/4+......+1\2011
cho A=1-1/2^2-1/3^2-1/4^2-...-1/2010^2
CMR A>1/2010
cho A=1-1/2^2-1/3^2-1/4^2-...-1/2010^2
CMR A>1/2010
Cho A = 1/2001+2/2009+3/2008+........2009/+ 2010/1, B = 1+1/2+1/3+1/4+1/5+1/6+.......1/2010+1/2011. Tính A/B
Cho P = 1/2 + 1/3 +1/4 +...+1/2011 + 1/2012
Q = 1/2011 + 2/2010 + 3/2009 +...+ 2009/3 + 2010/2 + 2011/1
cho A=1-1/2^2-1/3^2-1/4^2-...-1/2010^2
CMR A>1/2010
cho A=1-1/2^2-1/3^2-1/4^2-...-1/2010^2
CMR A>1/2010
Tinh\(\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{2}{2009}+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2010}+\frac{1}{2011}}\)
1. Cho A= 1/2 + 1/3 + 1/4 + ... + 1/2011 + 1/ 2012 và B= 2011/1 + 2010/2 + 2009/3 + ...+ 2/2010 + 1/2011
Tính: B/A { Giúp mik nhé ths }
(-1).(-1)^2.(-1)^3.(-1)^4 ...(-1)^2010.(-1)^2011