\(\left(x-\dfrac{5}{6}\right)^2=\left(\dfrac{1}{6}\right)^2\)
\(x-\dfrac{5}{6}=\dfrac{1}{6}\)
\(x=\dfrac{1}{6}+\dfrac{5}{6}\)
\(x=1\)
Vậy x = 1
\(\left(x-\dfrac{5}{6}\right)^2=\dfrac{1}{36}\\ =>\left(x-\dfrac{5}{6}\right)^2=\left(\dfrac{1}{6}\right)^2\\TH1:x-\dfrac{5}{6}=\dfrac{1}{6}\\ =>x=\dfrac{1}{6}+\dfrac{5}{6}\\ =>x=\dfrac{6}{6}=1\\ TH2:x-\dfrac{5}{6}=-\dfrac{1}{6}\\ =>x=\dfrac{-1}{6}+\dfrac{5}{6}\\ =>x=\dfrac{4}{6}=\dfrac{2}{3}\)
`( x - 5/6)^2 = 1/36`
`=> (x - 5/6)^2 = (+-1/6)^2`
`=> x - 5/6 = +-1/6`
Trường hợp `1:`
`x - 5/6 = 1/6`
`=> x = 1`
Trường hợp `2:`
`x - 5/6 = - 1/6`
`=> x = 2/3`
Vậy `x in {1;2/3}`