a: \(A=3+3^2+3^3+...+3^{100}\)
=>\(3A=3^2+3^3+3^4+...+3^{101}\)
=>\(3A-A=3^{101}+3^{100}+...+3^4+3^3+3^2-3^{100}-3^{99}-...-3^2-3\)
=>\(2A=3^{101}-3\)
=>\(A=\dfrac{3^{101}-3}{2}\)
b: \(n+7⋮n+2\)
=>\(n+2+5⋮n+2\)
=>\(n+2\inƯ\left(5\right)\)
=>\(n+2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{-1;-3;3;-7\right\}\)
mà n là số tự nhiên
nên n=3
a: A=3+32+33+...+3100�=3+32+33+...+3100
=>3A=32+33+34+...+31013�=32+33+34+...+3101
=>3A−A=3101+3100+...+34+33+32−3100−399−...−32−33�−�=3101+3100+...+34+33+32−3100−399−...−32−3
=>2A=3101−32�=3101−3
=>